
Latvijas informātikas olimpiāde

Svarīga tehniskā informācija dalībai olimpiādē

Saturs
1. Svarīga tehniskā informācija . ⁠2

1.1. Vispārīgi . ⁠2
1.2. C++ . ⁠2
1.3. Java . ⁠2
1.4. Go . ⁠2
1.5. Python . ⁠2

2. Datu ievads un izvads . ⁠3
2.1. Standarta ievads un izvads . ⁠3

2.1.1. Ievads . ⁠3
2.1.2. Programmu piemēri . ⁠3

2.1.2.1. C . ⁠3
2.1.2.2. C++ . ⁠3
2.1.2.3. Pascal . ⁠3
2.1.2.4. Python 3 . ⁠3
2.1.2.5. Java . ⁠4
2.1.2.6. Go . ⁠4

2.1.3. Veiktspējas uzlabojumi . ⁠4
2.2. Darbs komandrindā . ⁠5
2.3. Datu ievads, izvads interaktīvos (komunikācijas) uzdevumos . ⁠6

2.3.1. Ievads . ⁠6
2.3.2. Programmu piemēri . ⁠7

2.3.2.1. C . ⁠7
2.3.2.2. C++ . ⁠8
2.3.2.3. Pascal . ⁠8
2.3.2.4. Python 3 . ⁠8
2.3.2.5. Java . ⁠9
2.3.2.6. Go . ⁠9

2.3.3. Darbs komandrindā interaktīvos uzdevumos . ⁠10
2.4. Datu ievads valodā Java . ⁠11

2.4.1. Vienkāršs ievads un izvads . ⁠11
2.4.2. Ātrs ievads un izvads . ⁠11
2.4.3. Long tipa skaitļu lasīšana . ⁠12
2.4.4. Citas metodes . ⁠12

1/12

1. Svarīga tehniskā informācija

1.1. Vispārīgi
1. Punktu skaitu par uzdevumu nosaka hronoloģiski pēdējais iesūtītais risinājums, kas atzīts par derīgu testēšanai

(kompilējas). Precīzāku informācijas skatīt sacensību norises kārtības dokumentā.

2. ⚠ ️ Datu ievadei/izvadei jālieto standarta ievads/izvads (Skat. Datu ievads un izvads). Programmai sacensību
sistēmā nav atļauts veidot datnes un strādāt ar tām.

3. Programmēšanas valodu dokumentācija ir pieejama sadaļā «Dokumentācija» vai contest.lio.lv.

4. Sadaļā «Testēšana» var pārbaudīt risinājuma darbību sacensību sistēmā ar savu ievadu. Lejupielādei pieejamais
izvada fails tiks apgriezts pie 100 KiB robežas.

5. ⚠ ️ Java, Python u. c. valodās nenulles atgriešanās kodu var izraisīt arī neapstrādāta izņēmumsituācija (piemēram,
piekļūšana ārpus masīva robežām).

6. Sacensību sistēmā izmantotās programmēšanas vides un parametrus skatīt: https://contest.lio.lv/

7. Dalībnieka pienākums ir katra uzdevuma hronoloģiski pēdējo pamattestēšanai derīgo risinājumu saglabāt darba
datorā.

1.2. C++
1. ⚠ ️Iesakām neizmantot #pragma vai __attribute__ ((...)) funkcionalitāti risinājumu optimizēšanai. Ir viegli

iespējot funkcionalitāti, kas var rezultēties programmas nekorektā izpildē un tās darbības apturēšanā („Execution
killed“).

2. ⚠ ️ C/C++ long long skaitļu lasīšanai un rakstīšanai izmantojot scanf, printf funkcijas jālieto %lli vai %lld, nevis
%I64i vai %I64d.

1.3. Java
1. ⚠ ️ Java programmās nav jālieto «package» deklarācija.

2. ⚠ ️ Valodā Java rakstītam risinājumam ir jālieto klases vārds, kas ir definēts uzdevuma formulējuma sadaļā
«Ierobežojumi un prasības».

1.4. Go
1. Go dokumentācija:

• Uz sava datora palaiž godoc -http=localhost:6060 komandu
• Pārlūkā atver http://localhost:6060/
• Ja godoc komanda nav pieejama, tad vērsieties pie datorklases administratora, lai uzstāda godoc

dokumentāciju izmantojot komandu go install golang.org/x/tools/cmd/godoc.

1.5. Python
1. Sacensību sistēmā ir pieejamas divas Python 3 implementācijas:

• «CPython» ir visplašāk izmantotā python implementācija.
• «PyPy» ir populāra alternatīva Python implementācija, kura var strādāt ātrāk nekā CPython implementācija.

2. Lai noskaidrotu Python programmas nenulles atgriešanās koda iemeslu versiju nesaderības dēļ:
1. Iekļaujiet programmu try, except blokā (Skat. piemēru)
2. Iesūtiet programmu sacensību sistēmas „Testēšana“ sadaļā norādot savu programmu un ievaddatus.
3. Lejupielādējiet izpildes izvaddatus. Izlasiet izvadīto kļūdas iemeslu.

Piemēra programma:

try:
 # Jūsu python programma
 d = {"abols": 5} | {"kaposts": 4}
 print(d)
except Exception as e:
 print(e)
 # Izvaddatos tiks izdrukāts: unsupported operand type(s) for |: 'dict' and 'dict'

2/12

https://contest.lio.lv
https://contest.lio.lv/
http://localhost:6060/

2. Datu ievads un izvads

2.1. Standarta ievads un izvads

2.1.1. Ievads

Par standarta ievadu/izvadu sauc datu plūsmas, kas, programmai sākot darbu, jau ir atvērtas un gatavas darbam. Tas
atšķiras no datņu plūsmām, kas programmētājam ir jāatver pašam, norādot datnes nosaukumu un ceļu. To, ar ko
programmas standarta ievads/izvads ir saistīti (datnes, starpprocesu saziņa utt.), nosaka vide, kurā programma tiek
palaista, un veids, kā tas tiek darīts. Pašai programmai par to nav jāuztraucas — pietiek zināt, ka ar standarta ievadu/
izvadu var strādāt kā ar parastām datu plūsmām.

Pastāv trīs standarta datu plūsmas (iekavās doti plūsmu nosaukumi C, C++, Pascal, Java):

• Standarta ievads (stdin, std::cin, input, System.in) — datu plūsma, no kuras programma nolasa ievaddatus.
• Standarta izvads (stdout, std::cout, output, System.out) — datu plūsma, kurā programma ieraksta izvaddatus.
• Standarta diagnostiskais izvads (stderr, std::cerr/std::clog, errout, System.err) — datu plūsma, kurā programma

izvada kļūdas un diagnostiskos paziņojumus. To var lietot programmu atkļūdošanai.

Vairāk par standarta ievadu/izvadu var izlasīt Wikipedia.

2.1.2. Programmu piemēri

Tālāk ir doti piemēri darbam ar standarta plūsmām dažādās programmēšanas valodās (bez kļūdu apstrādes). Uzdevums
ir nolasīt divus skaitļus un izvadīt to summu.

2.1.2.1. C

#include <stdio.h>

int main()
{
 int a, b;

 scanf("%d %d", &a, &b);
 printf("%d\n", a + b);
}

2.1.2.2. C++

#include <iostream>

using namespace std;

int main()
{
 int a, b;

 cin >> a >> b;
 cout << a + b << "\n";
}

2.1.2.3. Pascal

program Sum;

var
 a, b: integer;

begin
 readln(a, b);
 writeln(a + b);
end.

2.1.2.4. Python 3

a, b = map(int, input().split())
print(a + b)

3/12

https://en.wikipedia.org/wiki/Standard_streams

2.1.2.5. Java

import java.io.*;
import java.util.*;

public class Sum {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 PrintWriter out = new PrintWriter(System.out);

 int a = in.nextInt(), b = in.nextInt();
 out.println(a + b);

 out.flush();
 }
}

2.1.2.6. Go

package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {
 var a, b int
 in := bufio.NewReader(os.Stdin)
 out := bufio.NewWriter(os.Stdout)

 fmt.Fscanf(in, "%d %d\n", &a, &b)
 fmt.Fprintf(out, "%d\n", a+b)
 out.Flush()
}

Piemērs izmanto bufio pakotni ievada, izvada buferizācijai.

2.1.3. Veiktspējas uzlabojumi

Piezīme: šajā nodaļā dotie padomi ir paredzēti pieredzējušiem lietotājiem.

Ja ievaddatu vai izvaddatu apjoms ir ļoti liels, ievads un izvads var aizņemt ievērojamu laiku. Ir daži veidi, kā to
samazināt:

• C++ ieteicams izsaukt std::ios::sync_with_stdio(false); programmas sākumā, ja nav paredzēts lietot C
(printf()/scanf()) funkcijas.

• C++ ieteicams izsaukt std::cin.tie(NULL); programmas sākumā, ja uzdevums nav interaktīvs.
• C++ ieteicams lietot '\n', nevis std::endl, ja uzdevums nav interaktīvs.
• Java Scanner vietā ieteicams lietot StringTokenizer vai StreamTokenizer, kopā ar BufferedReader.
• Java, lietojot PrintWriter, ieteicams izvadīt vērtības pa vienai un nelietot PrintWriter.printf() funkciju.
• Programmēšanas valodā Python datu ielasīšanai iesakām izmantot standarta ievada input funkciju:

import sys
input = sys.stdin.readline

Lielu datu ievadu ārpus sacensībām var izmēģināt CodeChef INTEST uzdevumā.

4/12

https://www.codechef.com/problems/INTEST

2.2. Darbs komandrindā
Piezīme: Windows operētājsistēmā komandrindas logu var atvērt, aizejot uz risinājuma mapi, spiežot Shift+labā peles

poga uz mapes fona un uzvēloties „Open command window here“.

Piezīme: Unix-veidīgu operētājsistēmu lietotājiem, kā arī PowerShell lietotājiem piemēros ir jāaizvieto prog ar ./prog.

Palaižot programmu komandrindā, programmu standarta plūsmas pēc noklusējuma tiek piesaistītas attiecīgajam
terminālim. Lietotājs var ievadīt datus programmā un iegūt rezultātus. Piemēram:

$ prog
1 2
3
$ █

⇦ Lietotājs ievada programmas nosaukumu "prog" un palaiž programmu ar Enter
⇦ Lietotājs ievada datus (kopā ar Enter)
⇦ Programma izvada atbildi
⇦ Komandrinda gaida nākamo lietotāja ievadīto komandu

Standarta ievadu/izvadu var novirzīt datnēs. Piemēram, var piesaistīt programmas standarta ievadu datnei:

$ prog < in.txt
3
$ █

⇦ Lietotājs palaiž programmu un standarta ievadā iedod in.txt (kas satur "1 2")
⇦ Programma nolasa ievadu un izvada rezultātu
⇦ Komandrinda gaida nākamo lietotāja ievadīto komandu

Kā arī var piesaistīt datnes vienlaikus gan standarta ievadam, gan izvadam:

$ prog < in.txt > out.txt
$ █

⇦ Lietotājs palaiž programmu, ievadā iedod in.txt, bet izvadu novirza out.txt
⇦ Terminālī nekas netiek izvadīts, bet out.txt tagad satur "3"

Vairāk par pāradresāciju var izlasīt Wikipedia.

5/12

https://en.wikipedia.org/wiki/Redirection_(computing)

2.3. Datu ievads, izvads interaktīvos (komunikācijas) uzdevumos

2.3.1. Ievads

Parasti sacensību programmēšanas uzdevumos tiek padoti nemainīgi ievaddati, un pēc visu ievaddatu ielasīšanas
programma izvada atbildi. Savukārt interaktīvajos uzdevumos programmai ir jāveido divvirzienu komunikācija ar
vērtēšanas sistēmu (interaktoru). Komunikācijas uzdevumos programma var izvadīt datus uz standarta izvadu, ko var
nolasīt interaktors, programma var nolasīt datus no standarta ievada, ko interaktors padod programmai, piemēram,
atbildot uz programmas izvadītajiem datiem standarta izvadā.

Interaktīvajos uzdevumos īpaša uzmanība ir jāpievērš tam, lai dati, ko programma padod izvadīšanai uz standarta
izvadu, tiešām sasniedz standarta izvadu un tālāk jau interaktoru. Lai ar lielu veiktspēju varētu ielasīt, izvadīt datus,
mūsdienās programmas izmanto papildus datu apgabalu (buferi/masīvu), kurā uzkrāt datus, lai varētu ielasīt, izvadīt
lielāku apjomu ar datiem vienā piegājienā, jo datu ielasīšana, izvadīšana no programmas ir relatīvi resursietilpīga
operācija.

Tādēļ, lai pārliecinātos, ka visi dati no bufera tiek izvadīti un ir nodoti interaktoram pirms, piemēram, tiek gaidīta
atbilde no tā, ir jāveic manuāla izvada sinhronizācija (flush).

Izvada sinhronizācija (flush) tiek izpildīta, piemēram, pēc šādu programmas izteikumu izpildes:

Programmēšanas
valoda

Izteikums Komentārs

C fflush(stdout);

C++

std::cout << std::endl;
Iesāk jaunu rindu (izvada jaunas rindas simbolus) un
veic izvada sinhronizāciju.

std::cout << std::flush;

std::cout.flush();

Python3
print("Hello world!", flush=True)

Izvada rindu ar Hello world! un veic izvada
sinhronizāciju.

sys.stdout.flush()

Pascal flush(output);

Go

fmt.Println(K)
Komanda izvada rindu ar vērtību 𝐾 un sinhronizē
izvadu.

writer.Flush()

Veic bufera sinhronizāciju, ja tiek izmantota bufio
bibliotēka.
writer := bufio.NewWriter(os.Stdout)

Izvadot ar fmt.Fprintln(writer, k) netiek veikta
izvada sinhronizācija.

Java

System.out.flush();

out.flush();
Sinhronizācija, ja izmanto PrintWriter.
out = new PrintWriter(System.out);

6/12

2.3.2. Programmu piemēri

Uzdevuma piemērs

Apraksts

Dators „ir iedomājies“ naturālu skaitli 𝑋 robežās no 1 līdz 𝑁 .

Skaitļa 𝑋 atminēšanai Jūsu programma var veikt vaicājumus. Katrs vaicājums ir formā „Vai iedomātais skaitlis ir

𝐾?“, kur 1 ≤ 𝐾 ≤ 𝑁 , un uz katru šādu vaicājumu dators dod vienu no trim atbildēm:
• 1, ja 𝐾 < 𝑋,
• 0, ja 𝐾 = 𝑋,
• −1, ja 𝐾 > 𝑋.

Skaitlis 𝑋 ir uzminēts tikai tad, ja ir izdarīts vaicājums uz kuru saņemta atbilde 0.

Uzrakstiet datorprogrammu, kas atrod skaitli 𝑋.

Komunikācija

Šis ir interaktīvs uzdevums. Jūsu programmai, sākot darbu, pirmā ievada rinda satur veselu skaitli 𝑁 (1 ≤ 𝑁 ≤

500). Iedomātā skaitļa vērtību 𝑋 vērtēšanas sistēma tur slepenībā. Tad jūsu programma var veikt vaicājumus, izvadā

rakstot vērtību 𝐾 (1 ≤ 𝐾 ≤ 𝑁). Vērtēšanas sistēma izdod atbildi nākamajā ievada rindā. Atbilde ir vesels skaitlis –

−1, 0 vai 1, kā aprakstīts iepriekš. Kad uz vaicājumu tiek izdota atbilde 0, jūsu programmai darbs jābeidz.

Tālāk ir doti piemēri darbam ar standarta plūsmām dažādās programmēšanas valodās, lai veiktu komunikāciju
atbilstoši dotā uzdevuma aprakstam.

2.3.2.1. C

#include <stdio.h>

int main()
{
 int n;
 scanf("%d", &n);

 int k = n / 2 + 1;
 while (true) {
 printf("%d\n", k);
 fflush(stdout);

 int reply;
 scanf("%d", &reply);
 if (reply == -1) {
 k = k - 1;
 } else if (reply == 1) {
 k = k + 1;
 } else {
 break;
 }
 }
}

7/12

2.3.2.2. C++

#include <iostream>

using namespace std;

int main()
{
 int n;
 cin >> n;

 int k = n / 2 + 1;
 while (true) {
 cout << k << "\n";
 cout.flush();

 int reply;
 cin >> reply;
 if (reply == -1) {
 k = k - 1;
 } else if (reply == 1) {
 k = k + 1;
 } else {
 break;
 }
 }
}

2.3.2.3. Pascal

program NumberGuessingGame;

var
 n, k, reply: Integer;

begin
 readln(n);
 k := n div 2 + 1;

 while True do
 begin
 writeln(k);
 flush(output);
 readln(reply);

 if reply = -1 then
 k := k - 1
 else if reply = 1 then
 k := k + 1
 else
 break;
 end;
end.

2.3.2.4. Python 3

import sys

n = int(input())
k = n // 2 + 1

while True:
 print(k)
 sys.stdout.flush()

 reply = int(input())

 if reply == -1:
 k -= 1
 elif reply == 1:
 k += 1
 else:
 break

8/12

2.3.2.5. Java

import java.util.Scanner;
import java.io.PrintWriter;

public class NumberGuessingGame {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 PrintWriter out = new PrintWriter(System.out);

 int n = in.nextInt();
 int k = n / 2 + 1;

 while (true) {
 out.println(k);
 out.flush();

 int reply = in.nextInt();

 if (reply == -1) {
 k = k - 1;
 } else if (reply == 1) {
 k = k + 1;
 } else {
 break;
 }
 }
 }
}

2.3.2.6. Go

package main

import (
 "bufio"
 "fmt"
 "os"
)

func main() {
 reader := bufio.NewReader(os.Stdin)
 writer := bufio.NewWriter(os.Stdout)

 var n, k, reply int
 fmt.Fscan(reader, &n)
 k = n/2 + 1

 for {
 fmt.Fprintln(writer, k)
 writer.Flush()

 fmt.Fscan(reader, &reply)

 if reply == -1 {
 k = k - 1
 } else if reply == 1 {
 k = k + 1
 } else {
 break
 }
 }
}

Piemērs izmanto bufio pakotni ievada, izvada buferizācijai.

9/12

2.3.3. Darbs komandrindā interaktīvos uzdevumos

Kā vispārīgi strādāt komandrindā lasiet sadaļā „Darbs komandrindā“.

Palaižot interaktīvu programmu komandrindā interaktora lomu varat uzņemties jūs ievadot ievaddatus komandrindas
skatā, apstrādājot programmas izvadu.

Piemēram, iepriekš dotajā piemēra uzdevumā interaktoru var simulēt sekojoši:
1. Jūs iedomājieties, ka 𝑁 = 10 un iedomātais skaitlis ir 7.
2. Jūs izsaucat programmu komandrindā.

$ prog
█

⇦ Lietotājs ievada programmas nosaukumu "prog" un palaiž programmu ar Enter
⇦ Programma gaida ievaddatus

3. Jūs padodat programmai skaitli N un programma jums izdod vaicājumu.

$ prog
10
6
█

⇦ Lietotājs ievada programmas nosaukumu "prog" un palaiž programmu ar Enter
⇦ Jūs ievadījāt vērtību N
⇦ Programma izvadīja vaicājumu vērtībai 6
⇦ Programma gaida ievaddatus

4. Jūs padodat programmai atbildi uz programmas izdarīto vaicājumu.

$ prog
10
6
1
7
█

⇦ Lietotājs ievada programmas nosaukumu "prog" un palaiž programmu ar Enter
⇦ Jūs ievadījāt vērtību N
⇦ Programma izvadīja vaicājumu vērtībai 6
⇦ Jūs ievadījāt vērtību 1, jo jūsu iedomātā vērtība bija lielāka nekā programmas
vaicātā
⇦ Programma izvadīja vaicājumu vērtībai 7
⇦ Programma gaida ievaddatus

5. Jūs padodat programmai atbildi uz programmas izdarīto vaicājumu.

$ prog
10
6
1
7
0
$ █

⇦ Lietotājs ievada programmas nosaukumu "prog" un palaiž programmu ar Enter
⇦ Jūs ievadījāt vērtību N
⇦ Programma izvadīja vaicājumu vērtībai 6
⇦ Jūs ievadījāt vērtību 1, jo jūsu iedomātā vērtība bija lielāka nekā programmas
vaicātā
⇦ Programma izvadīja vaicājumu vērtībai 7
⇦ Jūs ievadījāt vērtību 0, jo programma uzminēja jūsu iedomāto vērtību
⇦ Programma pabeidza darbību un komandrinda gaida nākamo izpildāmo komandu

6. Programma pabeidza darbību.

Šādi izmantojot komandrindu jūs varat pārbaudīt jūsu programmas darbību.

10/12

2.4. Datu ievads valodā Java

2.4.1. Vienkāršs ievads un izvads

Visvienkāršākā klase datu ievadam ir Scanner. Ar tās palīdzību var uzreiz lasīt dažādu tipu datus. Izvadam var izmantot
System.out. Diemžēl, abas šīs klases nenodrošina pietiekami ātru datu ievadu un izvadu un sacensību apstākļos lielāka
apjoma datiem var izrādīties par lēnu.

import java.util.Scanner;

public class IOTest {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int a = in.nextInt();
 int b = in.nextInt();
 System.out.println(a + b);
 System.out.flush();
 }
}

2.4.2. Ātrs ievads un izvads

Ātram datu ievadam ieteicams izmantot klasi StreamTokenizer. Šī klase automātiski sadala ievadu skaitļu un teksta
daliņās. Lai nolasītu kārtējo daļiņu, jāizsauc komanda nextToken(). Skaitļu un teksta vērtības tiek saglabātas attiecīgi
laukos nval un sval.

Ātram datu izvadam izmantojiet klasi PrintWriter. Nav ieteicams lietot tās metodi printf(), kas var strādāt lēni
(izmantojiet print() vai println()). Tāpat nav ieteicams izvadīt vairākos mainīgos reizē, kas arī var palēlināt izvadu
(piemēram, out.println(a + " " + b) vietā labāk lietot out.print(a); out.print(" "); out.println(b);).

import java.io.BufferedReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StreamTokenizer;

public class IOTest {
 static StreamTokenizer in;
 static PrintWriter out;

 static int nextInt() throws IOException {
 in.nextToken();
 return (int) in.nval;
 }

 static String nextString() throws IOException {
 in.nextToken();
 return in.sval;
 }

 public static void main(String[] args) throws IOException {
 in = new StreamTokenizer(new BufferedReader(new java.io.InputStreamReader(System.in)));
 out = new PrintWriter(System.out);
 int a = nextInt();
 int b = nextInt();
 out.println(a + b);
 String s = nextString();
 out.println(s);
 out.flush();
 }
}

11/12

2.4.3. Long tipa skaitļu lasīšana

Skaitliskās vērtības StreamTokenizer glabā double tipa laukā nval, kura precizitātes nepietiek, lai saglabātu long tipa
skaitļus. Lai nolasītu šādus skaitļus, var nodefinēt zīmes un ciparus kā tekstuālas vērtības priekš StreamTokenizer.
Tad skaitli var nolasīt kā tekstu un nopārsēt iegūto virkni par skaitli. Jāņem vērā, ka šajā gadījumā visi skaitļi tiks lasīti
kā teksts (arī int lieluma skaitļi).

import java.io.BufferedReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class IOTest {
 static StreamTokenizer in;
 static PrintWriter out;

 static Long nextLong() throws IOException {
 in.nextToken();
 return Long.parseLong(in.sval);
 }

 public static void main(String[] args) throws IOException {
 in = new StreamTokenizer(new BufferedReader(new java.io.InputStreamReader(System.in)));
 in.resetSyntax();
 in.whitespaceChars(0, 32);
 in.wordChars('0', '9');
 in.wordChars('-', '-');
 out = new PrintWriter(System.out);
 long a = nextLong();
 long b = nextLong();
 out.println(a + b);
 out.flush();
 }
}

2.4.4. Citas metodes

Dažreiz vēl ātrāk par StreamTokenizer strādā pati BufferedReader klase, un citos gadījumos var būt efektīvāk pielietot
StringTokenizer klasi. Par šiem rīkiem sīkāk var izlasīt Java dokumentācijā. Tomēr StreamTokenizer ātrdarbība
parasti ir pietiekama visos gadījumos.

12/12

	1. Svarīga tehniskā informācija
	1.1. Vispārīgi
	1.2. C++
	1.3. Java
	1.4. Go
	1.5. Python

	2. Datu ievads un izvads
	2.1. Standarta ievads un izvads
	2.1.1. Ievads
	2.1.2. Programmu piemēri
	2.1.2.1. C
	2.1.2.2. C++
	2.1.2.3. Pascal
	2.1.2.4. Python 3
	2.1.2.5. Java
	2.1.2.6. Go

	2.1.3. Veiktspējas uzlabojumi

	2.2. Darbs komandrindā
	2.3. Datu ievads, izvads interaktīvos (komunikācijas) uzdevumos
	2.3.1. Ievads
	2.3.2. Programmu piemēri
	2.3.2.1. C
	2.3.2.2. C++
	2.3.2.3. Pascal
	2.3.2.4. Python 3
	2.3.2.5. Java
	2.3.2.6. Go

	2.3.3. Darbs komandrindā interaktīvos uzdevumos

	2.4. Datu ievads valodā Java
	2.4.1. Vienkāršs ievads un izvads
	2.4.2. Ātrs ievads un izvads
	2.4.3. Long tipa skaitļu lasīšana
	2.4.4. Citas metodes

